Скачать этот документ в pdf


Зарегистрировано в Национальном реестре правовых актов
Республики Беларусь 11 февраля 2000 г. N 8/2928

                 УТВЕРЖДЕНО                   УТВЕРЖДЕНО
                 Министр сельского            Министр по
                 хозяйства и продовольствия   чрезвычайным ситуациям
                 Республики Беларусь          Республики Беларусь
                 В.С.Леонов                   И.А.Кеник
                 11.03.1997                   11.03.1997
РУКОВОДСТВО ПО ВЕДЕНИЮ АГРОПРОМЫШЛЕННОГО ПРОИЗВОДСТВА
В УСЛОВИЯХ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ЗЕМЕЛЬ
РЕСПУБЛИКИ БЕЛАРУСЬ НА 1997 - 2000 гг.
Руководство подготовили:
БелНИИ почвоведения и агрохимии - И.М.Богдевич, В.Ю.Агеец, Н.И.Смеян, И.Д.Шмигельская, Г.В.Василюк, Н.В.Клебанович, С.А.Касьянчик, А.Ф.Черныш, Н.А.Михайловская, Г.В.Мороз, М.В.Рак, З.В.Ковалевич, Ю.В.Путятин, Т.М.Серая, С.Е.Головатый, Л.И.Шибут, И.Д.Самусик
НИИ радиологии МЧС Республики Беларусь - С.К.Фирсакова, В.С.Аверин, Р.Г.Ильязов, Ю.Н.Пятнов, Н.В.Гребенщикова, С.Ф.Тимофеев
БелНИИ земледелия и кормов - В.И.Лавровский
БелНИИ защиты растений - В.Ф.Самерсов, П.М.Кислушко, И.А.Прищепа, С.Л.Быховец, А.В.Чистяков
БелНИИ мелиорации и луговодства - Г.И.Афанасик, Э.Н.Шкутов, Д.С.Пятница, В.В.Чайковский
БелНИИ овощеводства - М.М.Жишкевич, И.И.Подобедов, Л.Н.Красинская
БелНИИ плодоводства - О.И.Камзолова
БелНИИ животноводства - А.С.Зеньков, В.В.Бабеня
БелНИИ экспериментальной ветеринарии - А.Е.Антоненко, Е.А.Панковец
БелНИКТИ ММП - Н.А.Прокопьев
БСХА - В.Р.Петровец, Я.У.Яроцкий
Гомельский филиал научно-исследовательского клинического института радиационной медицины и эндокринологии - В.Е.Шевчук, Р.И.Погодин
Гомельская ОПИСХ - Т.В.Арастович, З.Ф.Василенко
Могилевская ОПИСХ - С.П.Баранова
МЧС РБ - Г.В.Анципов, А.Н.Боровиков, В.В.Барашенко
Минсельхозпрод - В.В.Гурков, З.П.Басалаева
Академия аграрных наук - Г.Ф.Тарасевич
Руководство предназначено для специалистов сельского хозяйства и организаторов агропромышленного производства, а также ведения личного (фермерского) хозяйства на территории Республики Беларусь, подвергшейся радиоактивному загрязнению в результате катастрофы на Чернобыльской АЭС. Основная задача настоящего руководства - обеспечение специалистов сельского хозяйства научно-методической и нормативной информацией, которая необходима для производства продуктов питания и сельскохозяйственного сырья с содержанием радионуклидов в пределах допустимых уровней, утвержденных Минздравом и Минсельхозпродом Беларуси в 1996 году (РДУ-96). Потребление произведенных на загрязненных землях пищевых продуктов, соответствующих РДУ-96, обеспечивает непревышение годовой дозы внутреннего облучения человека за счет радионуклидов цезия и стронция 1 мЗв.
Настоящее руководство является переработанным и дополненным изданием "Руководства по ведению агропромышленного производства в условиях радиоактивного загрязнения земель Республики Беларусь на 1993 - 1995 гг." Рассмотрено и одобрено Научно-техническим советом Министерства сельского хозяйства и продовольствия Республики Беларусь 26 февраля 1997 г.
Ответственный за выпуск кандидат сельскохозяйственных наук В.Ю.Агеец
1. ВВЕДЕНИЕ
Исследования, проведенные за период 1992 - 1996 гг., показали, что поведение радионуклидов в системе почва-растение продолжало изменяться. Установлено дальнейшее снижение подвижности цезия-137 вследствие перехода его в необменно-поглощенное состояние и увеличение подвижности стронция-90, что обусловило соответствующие изменения биологической доступности радионуклидов. По сравнению с 1991 г. доступность цезия-137 растениям снизилась в среднем в 1,5 раза, тогда как стронция-90, наоборот, повысилась на 5 - 25%. В связи с этим возникла необходимость уточнения коэффициентов перехода радионуклидов цезия и стронция из почв в сельскохозяйственные культуры.
Введение новых Республиканских допустимых уровней содержания радионуклидов цезия и стронция в пищевых продуктах и питьевой воде (РДУ-96), которые для цезия-137 по ряду позиций значительно ниже прежних (РДУ-92), а также повышение подвижности стронция-90 в почве требует дальнейшего совершенствования комплекса защитных мер, направленных на производство сельскохозяйственной продукции в зонах радиоактивного загрязнения, отвечающей требованиям радиационной безопасности.
В настоящем Руководстве нашли отражение результаты исследований научно-исследовательских институтов Академии аграрных наук и областных проектно-изыскательских станций химизации, полученные при выполнении Государственной программы по минимизации и преодолению последствий катастрофы на ЧАЭС. Уточнена система мер, направленных на обеспечение получения сельскохозяйственной продукции в соответствии с допустимыми уровнями содержания радионуклидов для общественного и личного (фермерского) хозяйства, рассмотрены вопросы организации кормовой базы, особенности эксплуатации мелиоративных систем на осушенных землях, ведения промышленного и усадебного плодоовощеводства на загрязненных территориях. Уточнены мероприятия по защите растений от вредителей, болезней и сорняков для зерновых и пропашных культур, перечень пестицидов, разрешенных к применению на угодьях с плотностью загрязнения выше 15 Ки/кв.км. Установлены коэффициенты перехода радионуклидов в травы на переувлажненных землях, а также в овощи, садовые фрукты и ягоды, дифференцированные в зависимости от гранулометрического состава, кислотности почв и содержания обменного калия. Уточнены коэффициенты перехода радионуклидов из суточного рациона в животноводческую продукцию, примерные рационы кормления крупного рогатого скота (КРС) и молодняка при различных способах их содержания.
2. РАДИАЦИОННАЯ ОБСТАНОВКА НА СЕЛЬСКОХОЗЯЙСТВЕННЫХ УГОДЬЯХ
РЕСПУБЛИКИ БЕЛАРУСЬ
Основными радионуклидами, определяющими радиационную обстановку на загрязненных сельскохозяйственных угодьях, являются цезий-137 и стронций-90. Система "почва-растение" является главным звеном в пищевой цепочке, обеспечивающей основное поступление радионуклидов в организм человека.
По состоянию на 1 января 1996 г. в республике сельскохозяйственное производство ведется на 1351,2 тыс.га земель, загрязненных цезием-137 с плотностью более 1 Ки/кв.км. Угодья с плотностью загрязнения 1 - 5 Ки/кв.км занимают 933,7 тыс.га, 5 - 15 Ки/кв.км - 354,1 тыс.га, 15 - 40 Ки/кв.км - 61,5 тыс.га. Из этих земель 555,1 тыс.га загрязнено стронцием-90 с плотностью более 0,15 Ки/кв.км. Особую сложность представляет производство нормативно чистой продукции на землях с содержанием цезия-137 5 - 40 Ки/кв.км, площадь которых составляет 415,6 тыс.га, из которых 35,7 тыс.га загрязнены и стронцием-90 с плотностью 1 - 3 Ки/кв.км.
Основные массивы загрязненных пахотных земель и луговых угодий сосредоточены в Гомельской (58%) и Могилевской (27%) областях. В Брестской, Гродненской и Минской областях их доля от общей площади загрязненных сельскохозяйственных угодий в республике составляет соответственно 6, 5 и 5%. В приложении 1 приводятся данные о плотности загрязнения земель радионуклидами по областям на 1 января 1996 г.
Хозяйственная деятельность на загрязненных территориях регламентируется законами Республики Беларусь "О правовом режиме территорий, подвергшихся радиоактивному загрязнению в результате катастрофы на Чернобыльской АЭС", "О социальной защите граждан, пострадавших от катастрофы на Чернобыльской АЭС" и в сфере сельскохозяйственного производства осуществляется на основе настоящего Руководства.
3. МИГРАЦИЯ РАДИОНУКЛИДОВ И ПЕРЕХОД ИХ ИЗ ПОЧВЫ
В СЕЛЬСКОХОЗЯЙСТВЕННУЮ ПРОДУКЦИЮ
3.1. Поведение радионуклидов в почвах
Исследованиями установлено, что 80 - 90% радионуклидов сосредоточено в активной зоне расположения основной массы корней сельскохозяйственных культур. На необрабатываемых после чернобыльской катастрофы землях практически все радионуклиды находятся в верхней части (до 10 - 15 см) гумусовых горизонтов, а на пахотных почвах радионуклиды распределены сравнительно равномерно по всей глубине обрабатываемого слоя. Расчеты показывают, что в ближайшей перспективе самоочищение корнеобитаемого слоя загрязненных почв за счет вертикальной миграции радионуклидов будет незначительным.
Вместе с тем наблюдаются процессы локального вторичного загрязнения почв сельскохозяйственных угодий за счет горизонтальной миграции радионуклидов вследствие ветровой и водной эрозии. Содержание цезия-137 в пахотном горизонте различных элементов рельефа склоновых земель в результате водной эрозии на посевах однолетних культур за девять лет перераспределилось до 1,5 - 3,0 раз. Увеличение плотности загрязнения почв цезием-137 в зоне аккумуляции (нижние части склонов и понижения) по сравнению с зоной смыва составило в среднем от 13% при ежегодном смыве почвы менее 5 т/га до 75% - при смыве 12 - 20 т/га. На бессменных посевах многолетних трав твердого стока не наблюдалось и достоверных различий в плотности загрязнения почв по элементам склонов не установлено. В результате ветровой эрозии осушенных торфяно-болотных и песчаных почв, используемых под посев однолетних культур, локальные различия в плотности загрязнения пахотного горизонта радиоцезием достигали 1,5 - 2,0 раз. Это подчеркивает необходимость защиты почв от водной и ветровой эрозии, что обеспечивает также снижение потерь гумусового слоя и уменьшает вероятность загрязнения продукции на локальных участках угодий.
Доступность растениям цезия-137 в почве со временем снижается вследствие его перехода в необменно-поглощенное состояние, а подвижность стронция-90 остается высокой и имеет тенденцию к повышению. Основное количество цезия-137 (70 - 84%) находится в прочносвязанной форме. Для стронция-90, наоборот, характерно преобладание легкодоступных для растений водорастворимой и обменной форм, которые в сумме составляют 53 - 87% от валового содержания.
Отмеченные изменения обусловили разную биологическую доступность указаниях радионуклидов. Анализ большого массива экспериментальных данных показал, что коэффициенты перехода (Кп) для цезия-137 в основные сельскохозяйственные культуры по сравнению с 1991 годом снизились в среднем в 1,5 раза и до 4 раз - по сравнению с 1987 г. Для стронция-90 наблюдается устойчивая тенденция к повышению его перехода из почвы в растения. Установлено, что на кислых, малогумусированных почвах доля подвижных форм радионуклидов выше, чем на высокоплодородных. Поэтому по-прежнему целесообразны агрохимические меры, направленные на повышение плодородия почв, увеличение их емкости поглощения и снижение подвижности радионуклидов в почвенном комплексе.
3.2. Переход радионуклидов из почвы в растения
Поведение стронция-90 и цезия-137 в системе "почва-растение" имеет ряд отличительных особенностей. Поступление стронция-90 из почв в растения практически в 10 раз выше, чем цезия-137 при одинаковой плотности загрязнения земель.
Содержание радионуклидов в сельскохозяйственной продукции зависит как от плотности загрязнения, так и типа почв, их гранулометрического состава и агрохимических свойств, а также биологических особенностей возделываемых культур. Показатели почвенного плодородия оказывают существенное влияние на накопление радионуклидов всеми сельскохозяйственными культурами, особенно многолетними травами. При повышении содержания физической глины в почве от 5 до 30%, содержания гумуса от 1 до 3,5% переход радионуклидов в растения снижается в 1,5 - 2 раза, а по мере повышения содержания в почве подвижных форм калия и фосфора от низкого (менее 100 мг К2О на кг почвы) до оптимального (200 - 300 мг/кг) и изменения реакции почв от кислого интервала (рН 4,5 - 5,0) к нейтральному (рН 6,5 - 7,0) - в 2 - 3 раза. Минимальный переход цезия-137 и стронция-90 в растения наблюдается на почвах с оптимальными параметрами агрохимических свойств.
Еще большее влияние на накопление радионуклидов в сельскохозяйственной продукции оказывает режим увлажнения почв. Установлено, что переход радиоцезия в многолетние травы повышается в 10 - 27 раз на дерново-глеевых и дерново-подзолисто-глеевых почвах по сравнению с автоморфными и временно-избыточно увлажняемыми разновидностями этих почв. Исследованиями БелНИИ мелиорации и луговодства установлено, что минимальное накопление цезия-137 в многолетних травах обеспечивается при поддержании уровня грунтовых вод на глубине 90 - 120 см от поверхности осушенных торфяных и торфяно-глеевых почв.
Установленные в исследованиях закономерности подтверждены практикой. На переувлажненных песчаных и торфяных почвах, например, в Наровлянском и Лельчицком районах Гомельской области, Столинском и Лунинецком районах Брестской области высокая степень загрязнения травяных кормов и молока наблюдается даже при относительно низких плотностях загрязнения цезием-137 (2 - 5 Ки/кв.км) и стронцием-90 (0,3 - 1,0 Ки/кв.км). В то же время на окультуренных участках дерново-подзолистых суглинистых почв продукция с допустимым содержанием радионуклидов может быть получена при плотности загрязнения цезием-137 до 20 - 30 Ки/кв.км.
Очевидно, что плотность загрязнения почв сельскохозяйственных угодий радионуклидами не может однозначно отражать уровень загрязнения выращиваемой сельскохозяйственной продукции и в настоящее время для разработки эффективных защитных мероприятий необходим учет основных свойств почв каждого поля.
Особенности минерального питания, разная продолжительность вегетационного периода и другие биологические особенности различных видов растений влияют на накопление радионуклидов. Содержание цезия-137 в расчете на сухое вещество отдельных культур может различаться до 180 раз, о накопление стронция-90 - до 30 раз при одинаковой плотности загрязнения почв. Сортовые различия в накоплении радионуклидов значительно меньше (до 1,5 - 3,0 раз), но их также необходимо учитывать при подборе культур.
На основании обобщения экспериментального материала последних лет уточнены коэффициенты перехода радионуклидов цезия-137 и стронция-90 из почвы в основную и побочную продукцию сельскохозяйственных культур на различных почвах (из расчета на плотность загрязнения 1 Ки/кв.км), необходимые для прогноза уровней загрязнения сельскохозяйственной продукции (приложения 4, 5, 6, 7).
4. АГРОПРОМЫШЛЕННОЕ ПРОИЗВОДСТВО В УСЛОВИЯХ РАДИОАКТИВНОГО
ЗАГРЯЗНЕНИЯ ТЕРРИТОРИИ
4.1. Основные требования радиационной безопасности,
предъявляемые к сельскохозяйственной продукции
В целях уменьшения поступления радионуклидов в организм человека, снижения доз внутреннего облучения населения Минздравом периодически пересматриваются допустимые уровни содержания радионуклидов в продуктах питания. 17 июня 1996 года утверждены Республиканские допустимые уровни содержания радионуклидов цезия и стронция в пищевых продуктах и питьевой воде (РДУ-96) (приложение 2). Они предусматривают снижение среднегодовой эффективной дозы внутреннего облучения за счет радионуклидов цезия и стронция до величины, не превышающей 1 мЗв. Нормирование проведено с учетом реально достигнутых уровней содержания цезия-137 и стронция-90 в основных продуктах питания и потенциальной возможности обеспечения снижения накопления радионуклидов в сельскохозяйственной продукции. Введение РДУ-96 направлено на стимулирование работ по повышению плодородия почв и другим защитным мерам на землях с плотностью загрязнения цезием-137 1 - 40 Ки/кв.км и стронцием-90 0,15 - 3,0 Ки/кв.км, где разрешена хозяйственная деятельность.
По сравнению с предшествующими РДУ-92 ужесточены требования к содержанию цезия-137 в хлебопродуктах, муке, крупяных изделиях, картофеле, корнеплодах, мясе свиней и птицы.
Для получения продуктов питания с содержанием радионуклидов в пределах требований РДУ-96 разработаны и утверждены Минсельхозпродом "Республиканские допустимые уровни содержания цезия-137 и стронция-90 в сельскохозяйственном сырье и кормах" (приложение 3). В этих нормативах существенно уменьшено допустимое содержание цезия-137 в зернофураже (комбикормах):
- для дойного стада, свиней и птицы - с 370 до 200 Бк/кг;
- для производства молока-сырья и заключительного откорма КРС - с 888 до 600 Бк/кг.
Уменьшено допустимое содержание радиоцезия и в кормовых добавках (хвойная и травяная мука, дробина пивная, патока, жом, барда, мясокостная мука) - до 1000 Бк/кг. Нормативные требования по содержанию стронция-90 в различных кормах остались на прежнем уровне при минимальных корректировках (округлениях) в сторону уменьшения допустимых параметров.
Вся растениеводческая и животноводческая продукция, используемая для продовольственных целей, переработки и реализации на внутреннем рынке Республики Беларусь, должна соответствовать установленным требованиям.
4.2. Общие принципы организации агропромышленного
производства
Для получения сельскохозяйственной продукции с допустимым содержанием радионуклидов и обеспечения радиационной безопасности работающих разработаны организационные, агротехнические, агрохимические, технологические и санитарно-гигиенические мероприятия.
Организационные мероприятия предусматривают:
- инвентаризацию угодий по плотности загрязнения радионуклидами и составление карт;
- прогноз содержания радионуклидов в урожае и продукции животноводства;
- инвентаризацию угодий в соответствии с результатами прогноза и определение площадей, где возможно выращивание культур для различного использования:
а) на продовольственные цели;
б) для производства кормов;
в) для получения семенного материала;
г) на техническую переработку,
- исключение угодий из хозяйственного использования или перевод выведенных из землепользования в хозяйственное использование;
- изменение структуры посевных площадей и севооборотов;
- переспециализацию отраслей животноводства;
- организацию радиационного контроля продукции;
- оценку эффективности мероприятий и уровня загрязнения урожая после их проведения.
Агротехнические приемы предусматривают:
- увеличение доли площадей под культуры с низким уровнем накопления радионуклидов;
- коренное и поверхностное улучшение сенокосов и пастбищ, включающее культуртехнические мероприятия, посев травосмесей с минимальным накоплением радионуклидов, фрезерование и глубокую вспашку с оборотом пласта верхнего слоя на естественных кормовых угодьях, гидромелиорацию (осушение и оптимизацию водного режима), предотвращение вторичного загрязнения почв за счет комплекса противоэрозионных мероприятий;
- применение средств защиты растений.
Агрохимические мероприятия предусматривают оптимизацию физико-химических свойств почв посредством:
- известкования кислых почв;
- внесения органических удобрений;
- внесения повышенных доз фосфорных и калийных удобрений;
- оптимизации азотного питания растений на основе почвенно-растительной диагностики;
- внесения микроудобрений.
Технологические приемы включают:
- промывку и первичную очистку убранной плодоовощной и технической продукции;
- переработку полученной продукции с целью снижения в ней концентрации радионуклидов;
- специальную систему кормления животных с применением сорбирующих препаратов.
4.3. Прогноз загрязнения растениеводческой продукции
Прогноз загрязнения растениеводческой продукции позволяет заблаговременно планировать набор культур для возделывания на загрязненных радионуклидами угодьях, их размещение по полям севооборотов и отдельным участкам с учетом плотности загрязнения почв и возможности использования получаемой продукции (продовольственные цели, фураж, промышленная переработка и др.).
Для прогноза используются значения коэффициентов перехода радионуклидов из почвы в урожай из расчета на 1 Ки/кв.км, которые дифференцированы в зависимости от типа и гранулометрического состава почв, содержания обменного калия и реакции почвенной среды (приложения 4 - 7), а также результаты агрохимического и радиологического обследования почв, представленные в виде агрохимических паспортов полей и совмещенных картограмм загрязнения почв цезием-137 и стронцием-90 в границах хозяйств с принятыми градациями (табл. 1).
Таблица 1
Градации по степени загрязненности почв радионуклидами
Степень
загряз-
нения  



Цезий-137                   
Стронций-90                  
Запас в       
пахотном      
(гумусовом)   
слое, Ки/кв.км
Обозначение  
на           
картограммах,
окраска      
Запас в       
пахотном      
(гумусовом)   
слое, Ки/кв.км
Вид штриховки 



   1   
менее 1,0     
не окрашивать
менее 0,15    
не штрихуется 
   2   
1,0 - 4,9     
голубой      
0,15 - 0,30   
IIIIIIIII     
   3   
5,0 - 9,9     
синий        
0,31 - 0,50   
////////      
   4   
10,0 - 14,9   
зеленый      
0,51 - 1,00   
\\\\      
   5   
15,0 - 29,9   
желтый       
1,01 - 2,00   
хххххххх      
   6   
30,0 - 39,9   
оранжевый    
2,01 - 2,99   
++++++++      
   7   
40 и более    
красный      
3 и более     
++++      
Радиологическое обследование сельскохозяйственных угодий проводится в соответствии с "Дополнениями к методике крупномасштабного агрохимического и радиологического исследования почв сельскохозяйственных угодий Республики Беларусь" (Минск, 1995).
Пример расчета прогнозируемого уровня загрязнения
растениеводческой продукции
В настоящее время в практике применяется две единицы радиоактивности - беккерель (Бк) и кюри (Ки),
                         10
          1 Ки = 3,7 х 10   Бк
              или
                      -9
          1нКи (1 х 10   Ки) = 37 Бк.
Для прогноза уровня загрязнения конкретной культуры радионуклидами цезия или стронция необходимо коэффициенты перехода, рассчитанные для плотности загрязнения почв 1 Ки/кв.км, умножить на величину плотности загрязнения почвы. Полученный результат будет соответствовать уровню загрязнения растениеводческой продукции, выращенной на конкретном поле без проведения дополнительных защитных мероприятий, направленных на снижение перехода радионуклидов из почвы в растения. Например, необходимо определить уровень радиоактивной загрязненности сена многолетних злаковых трав цезием-137 на дерново-подзолистых супесчаных почвах. Плотность загрязнения почвы по цезию-137 равна 10 Ки/кв.км при содержании обменного калия 150 мг/кг почвы. По таблице (приложение 4) находим значение коэффициента пропорциональности (удельная радиоактивность 1 кг продукции при плотности загрязнения почв 1 Ки/кв.км), который равен 0,80 нКи/кг, умножаем на 10 Ки/кв.км и на коэффициент 37 (для перевода нКи в Бк). Таким образом прогнозируемое загрязнение сена цезием-137 составит: 0,8 x 10 x 37 = 296 Бк/кг. Сопоставляя полученную величину с нормативной (приложение 3), определяем возможность использования сена. В данном случае сено может без ограничения скармливаться дойному стаду для получения цельного молока. Аналогичным образом делаются расчеты для прогноза содержания стронция-90 в сельскохозяйственных культурах. При этом учитывается уровень кислотности почвы.
4.4. Мероприятия по снижению поступления радионуклидов
в продукцию растениеводства
4.4.1. Подбор культур
Многолетние травы сенокосов и пастбищ отличаются наибольшей способностью аккумулировать цезий-137 и стронций-90. Осоково-злаковые и, особенно, осоковые ценозы, приуроченные к постоянно переувлажненным, пониженным элементам рельефа, накапливают цезия-137 в 5 - 100 раз больше, чем злаковые ценозы из ежи сборной и мятлика лугового. Различия в накоплении стронция-90 также существенны, по степени уменьшения поступления радионуклида они располагаются в следующем порядке: разнотравье, осоки, ежа сборная, мятлик.
Среди злаковых многолетних трав по накоплению цезия-137 установлен следующий убывающий ряд: костер безостый, тимофеевка, ежа сборная, овсяница, мятлик луговой, райграс пастбищный. Накопление цезия-137 на единицу сухого вещества однолетних полевых культур уменьшается в следующем порядке: зерно люпина, зеленая масса пелюшки, редьки масличной и рапса, зерно гороха и вики, семена рапса, зеленая масса гороха, вики, ботва свеклы, солома ячменя, овса, озимой ржи и тритикале, озимой пшеницы, зерно кукурузы, овса, озимой ржи, тритикале, озимой пшеницы. Для практического использования в приложениях 4 и 5 приведено содержание цезия-137 в продукции основных культур, в пересчете на стандартную влажность.
Убывающий ряд культур по накоплению стронция-90 существенно отличается от такового по цезию-137: клевер, горох, рапс, люпин, однолетние бобово-злаковые смеси, разнотравье суходольных сенокосов и пастбищ, многолетние злаковые травы, солома ячменя, солома овса, зеленая масса кукурузы и озимой ржи, свекла кормовая, зерно ячменя, овса, озимой ржи, картофель. В приложениях 6 и 7 содержание стронция-90 приведено в пересчете на стандартную влажность продукции.
Отмечены различия в накоплении радионуклидов, связанные с сортовыми особенностями культур. Сорта интенсивного типа, потребляющие значительные количества питательных веществ, отличаются повышенным накоплением радионуклидов (сорта ячменя Березинский, Роланд, Селянин, Верас, картофель Орбита). Подбор сортов с минимальным накоплением радионуклидов не требует значительных затрат и может быть особенно эффективным в овощеводстве и при возделывании столового картофеля на почвах, загрязненных стронцием-90. Минимальное загрязнение клубней стронцием-90 наблюдается при возделывании ранних и среднеспелых сортов картофеля Аксамит, Альтаир, Сантэ и Синтез. По отношению к цезию-137 эти различия несущественны.
В связи с проведенным комплексом агротехнических и агрохимических защитных мер и естественными процессами уменьшения подвижности радиоцезия в почве объемы загрязненных сверх допустимых уровней зерна, картофеля и кормовых корнеплодов, начиная с 1988 года, быстро снижались. С 1993 года в колхозах и совхозах республики практически не производилось зерно, картофель и корнеплоды, загрязненные цезием-137 сверх допустимых уровней.
В связи с введением новых допустимых уровней (РДУ-96) гарантированное производство зерновых культур и картофеля на продовольственные цели становится возможным при плотности загрязнения пахотных угодий цезием-137 до 15 Ки/кв.км. Для целенаправленного, планомерного ведения сельскохозяйственного производства в зоне 15 - 40 Ки/кв.км необходим прогноз возможности производства различных видов продукции растениеводства и животноводства с учетом гранулометрического состава и агрохимических свойств каждого поля. Возделывание на продовольственные цели озимой пшеницы, ржи, ячменя, картофеля и некоторых овощных культур (огурцы, кабачки, томаты) на землях с плотностью загрязнения цезием-137 15 - 40 Ки/кв.км возможно только на хорошо окультуренных дерново-подзолистых суглинистых и супесчаных почвах (при отсутствии загрязнения почв стронцием-90). На окультуренных песчаных почвах возделывание этих же культур возможно при плотности загрязнения почв менее 30 Ки/кв.км. Необходимо строго учитывать уровень загрязнения почвы при возделывании столовых корнеплодов - свеклы и моркови, особенно на песчаных почвах, поскольку имеется вероятность получения урожая с превышением допустимых уровней содержания цезия-137. При размещении столовых корнеплодов на легких почвах необходим прогноз возможного накопления радиоцезия урожаем.
При плотности загрязнения почв стронцием-90 1 - 3 Ки/кв.км практически невозможно возделывание столового картофеля и зерновых культур на продовольственные цели. Зерновые культуры могут использоваться на фураж, преимущественно для мясного откорма и производства молока-сырья для переработки на масло (согласно нормативам приложения 3). Сенокосы и пастбища можно использовать для дойного стада ограниченно, в основном для производства молока-сырья. На окультуренных пахотных почвах и улучшенных луговых угодьях мясное скотоводство здесь можно вести с минимальными ограничениями на заключительной стадии откорма. Зеленые и грубые корма, получаемые на торфяно-болотных почвах, а также на естественных пастбищах и сенокосах, пригодны только для начальной стадии откорма животных.
Сокращение посевов клевера с заменой их на злаковые травостои обосновано только на почвах, загрязненных стронцием-90 с плотностью более 0,3 Ки/кв.км, где зеленая масса и сено клевера непригодны для скармливания дойному стаду, так как клевер накапливает радионуклиды стронция в среднем в 2,5 раза больше, чем злаковые травы. На дерново-подзолистых почвах, загрязненных преимущественно цезием-137, посевы клевера предпочтительны, так как он накапливает радиоцезий в среднем на 30% меньше, чем многолетние злаковые травы. На дерново-подзолистых почвах с плотностью загрязнения цезием-137 5 - 15 Ки/кв.км и стронцием-90 - 0,3 - 0,5 Ки/кв.км более пригодны клеверо-злаковые травосмеси, которые обеспечивают кормовой рацион белком при минимальных дозах азотных удобрений, а на плодородных почвах - и без минерального азота. Полное исключение бобового компонента из травосмесей требует повышенных доз азота, что усиливает загрязнение растений радиоцезием. На загрязненных торфяно-болотных почвах целесообразны только злаковые травосмеси, так как клевер накапливает здесь примерно в два раза больше радионуклидов цезия и стронция, чем многолетние злаковые травы.
Особого внимания заслуживают посевы кукурузы, высокие урожаи зеленой массы которой можно получать как при чередовании ее с другими культурами в севообороте, так и в бессменных посевах в течение двух-трех лет. Расширение посевов кукурузы на зерно в южных районах республики позволяет пополнить кормовой баланс, поскольку на дерново-подзолистых почвах легкого гранулометрического состава невозможно возделывание многолетних бобовых трав. Кроме того, зерно кукурузы меньше накапливает радионуклиды.
Главными условиями при подборе культур является пригодность почв по гранулометрическому составу и режиму увлажнения, степени окультуренности и плотности радиоактивного загрязнения (приложение 8). Необходимо также учитывать и общебиологические требования растений к предшественникам, поскольку важнейшим элементом системы земледелия на территориях, подвергшихся радиоактивному загрязнению, является севооборот.
Это указывает на необходимость разработки планов размещения сельскохозяйственных культур по полям севооборотов с учетом всех свойств и особенностей каждого поля, используя последние материалы радиологического и агрохимического обследования почв и уточненные коэффициенты перехода радионуклидов из почвы в растения и далее в продукцию животноводства.
4.4.2. Обработка почв
Система обработки почв в зоне радиоактивного загрязнения направлена на снижение накопления радионуклидов в урожае, уменьшение эрозионных процессов и снижение времени воздействия излучения на работающих в поле.
Мелиоративная глубокая вспашка, которая в наибольшей степени снижает поступление радионуклидов в растения (до 5 - 10 раз), возможна на почвах с мощным гумусовым (торфяным) слоем и в условиях Беларуси имеет ограниченное применение. Выполняют ее плантажными, болотными или специальными одноярусными плугами с предплужниками (ПБН-3-50А, ПНУ-4-40), о также ярусными (ПСН-4-40, ПНЯ-4-42). На минеральных почвах верхний слой 8 - 10 см укладывается прослойкой по дну борозды глубиной 27 - 40 см, а чистый от радионуклидов слой перемещается поверх его без оборота (ПСН-4-40) или с оборотом (ПНУ-4-40, ПНЯ-4-42). По пласту многолетних трав для проведения такой вспашки необходима предварительная разделка дернины, лучше всего фрезерование (ФН-1,8) на глубину слоя загрязнения.
Схема такой вспашки может быть использована на вновь осваиваемых землях и на глубокозалежных торфяниках с выполненной на них после аварии неглубокой обработкой, т.е. когда радионуклиды распределены в слое 0 - 25 см. Но при этом должна быть увеличена до 50 - 60 см общая глубина вспашки (ПТН-0,9). Специальная глубокая вспашка - мероприятие разовое и последующие обработки проводятся таким образом, чтобы их глубина была меньше глубины расположения заделанного загрязненного слоя.
Традиционная отвальная система обработки почвы совершенствуется в направлении максимально возможного совмещения операций основной и дополнительных обработок, а также применения новых высокопроизводительных машин, таких как лущильники ЛАГ-10(15), бороны БДТ-7(10), культиваторы чизельные КЧН (КЧП)-5,4, комбинированные агрегаты финишной обработки АКШ-7,2 (3,6). Преимущественное ее использование - на землях со средне- и тяжелосуглинистыми почвами.
Эродированные и эрозионноопасные склоны, а также уплотненные и временно избыточно увлажненные участки следует обрабатывать безотвально с периодическим рыхлением и щелеванием орудиями РЩ-3,5, РУ-45-1, АКР-4,5 (2.5). Для проведения щелевания зяби можно использовать чизельные плуги ПЧ-4,5 (2,5), ПЧК-4,5 (2,5).
На легких песчаных и супесчаных почвах с уровнем загрязнения менее 15 Ки/кв.км по цезию-137 и менее 1 Ки/кв.км по стронцию-90 целесообразна система минимальной обработки. Вспашка необходима только на задернованных агрофонах, а также под пропашные культуры (картофель, корнеплоды) при внесении высоких доз органических удобрений. При этом пахотный агрегат должен быть комбинированным, с более совершенными рабочими органами по качеству крашения пласта и заделки верхнего слоя. Для этого рекомендуются плуги типа ПЛН, оборудованные корпусами с полувинтовыми отвалами, выпуск которых освоен в Республике Беларусь. Высокое качество обработки почв достигается при использовании комбинированных пахотных агрегатов на базе камнезащитных плугов (ПКГ, ППП), оборудованных унифицированными корпусами ПГЦ-71,000:
- с полувинтовыми отвалами - для обработки стерневых агрофонов;
- с винтовыми отвалами - для обработки задернованных почв.
В качестве орудий дополнительной (в т.ч. и финишной) обработки почвы могут использоваться специализированные машины ППР-2,3, ПВР-3,5 (2,7; 2,3) или общего назначения - кольчато-шпоровые катки типа ККШ, зубовые бороны. Составляются комбинированные пахотные агрегаты при помощи унифицированного приспособления ППМ-7. Под другие культуры севооборота (зерновые, однолетние травы и др.) рекомендуется применение неглубокой (на 10 - 14 см) обработки чизельными культиваторами с последующим применением предпосевной обработки. Лучшим вариантом является выполнение обработки за один, максимум два прохода комбинированными почвозащитными агрегатами АЧУ-2,8, АКП-3,9Б.
При высокой плотности загрязнения радионуклидами (15 - 40 Ки/кв.км по цезию-137 и 1 - 3 Ки/кв.км по стронцию-90) рекомендуется комбинированная система обработки почвы. Она включает чередование минимальных обработок с ярусной отвальной вспашкой 1 - 2 раза в севообороте при одновременной заделке в подпахотные слои больших доз органических удобрений и сидератов. Глубина ярусной вспашки не превышает мощности пахотного горизонта. Одновременно выполняется предпосевная обработка. Для этой цели разработан комбинированный агрегат АКЯ-4-42.
Посев зерновых, зернобобовых и крестоцветных культур должен быть особо качественным, на строго заданную глубину с равномерным распределением по площади питания. При этом локальное внесение минеральных удобрений является предпочтительным. Повышение эффективности и уменьшение потерь удобрений обеспечивается при закладке их на глубину 5 - 9 см с боковой ориентацией относительно рядков семян в пределах 3 - 4 см. Для этих целей используют комбинированную сеялку СЛЗ-3,6 с 2-дисковыми сошниками разных диаметров. На плодородных почвах с высоким уровнем минерального питания по фону отвальной обработки можно использовать высокопроизводительные зерновые сеялки СПУ-6, С-6, а также СПТ-7,2 для посева трав в чистом виде или под покров.
Коренное улучшение является наиболее эффективным способом снижения поступления радионуклидов из почвы в луговые травы малопродуктивных естественных кормовых угодий. Первичную обработку дернины осуществляют тяжелыми дисками в два-три следа. Слабозадерненные луга пашут обычными плугами на глубину 18 - 20 см, а сильнозадерненные и луга на торфяно-болотных почвах - кустарниково-болотным плугом на глубину 30 - 35 см, а при мощном торфяном слое - до 40 - 45 см.
На сенокосах и пастбищах, где после катастрофы было проведено перезалужение с запахиванием дернины на дно борозды, при повторном перезалужении вспашка недопустима. Следует проводить поверхностное фрезерование и прикатывание с посевом агрегатом АПР-2.6 или обновлять травостой путем подсева трав в дернину фрезерной сеялкой МД-3.6. На переувлажненных почвах тяжелого гранулометрического состава перед применением посевных машин необходимо предварительно разделать дернину чизельными орудиями и провести фрезерование. На перезалуженных участках высокоплодородных почв возможно сохранять длительный период (5 - 6 лет) высокую продуктивность травостоя, а также менять его ботанический состав путем подсева сеялкой МД-3,6 во фрезерованные бороздки многокомпонентных смесей трав, при норме высева семян 50% от полной. Для оптимизации агрофизических условий в корнеобитаемом слое и улучшения режима питания растений на сенокосах и пастбищах рекомендуется не реже одного раза в пять лет проводить подпокровное рыхление. Минимальное нарушение целостности дернины и выравненности поверхности достигается плугами-рыхлителями типа "ПАРАПЛАУ" (ПРПВ-5-50). Коренное и поверхностное улучшение луговых угодий - эффективная мера, позволяющая не менее чем вдвое уменьшить поступление радионуклидов в травы.
Рекомендуемые к применению машины с указанием их основных характеристик и организаций изготовителей приведены в приложении 9. Предложенная система обработки почв и применение высокопроизводительных комбинированных агрегатов позволяет снизить на 30 - 40% внешние дозовые нагрузки на механизаторов, трудозатраты до 50% и расход горюче-смазочных материалов на 30 - 35%.
4.4.3. Известкование кислых почв
Внесение извести является эффективным приемом снижения поступления цезия-137 и стронция-90 из почвы в растения. Установлено, что внесение извести в дозе, соответствующей полной гидролитической кислотности, снижает содержание радионуклидов в продукции растениеводства в 1,5 - 3 раза (иногда до 10 раз) в зависимости от типа почв и исходной степени кислотности. Минимальное накопление радионуклидов наблюдается при оптимальных показателях реакции почвенной среды (рН в KCl), которые для дерново-подзолистых почв в зависимости от гранулометрического состава составляют:
- глинистые и суглинистые 6,0 - 6,7
- супесчаные 5,8 - 6,2
- песчаные 5,6 - 5,8
На торфяно-болотных и минеральных почвах сенокосов и пастбищ оптимальные параметры составляют соответственно 5,0 - 5,3 и 5,8 - 6,2.
Достижение этих параметров осуществляется известкованием нуждающихся почв. Дозы извести дифференцируются по типам почв, гранулометрическому составу, степени кислотности и плотности загрязнения почв цезием-137 и стронцием-90.
Основная потребность в известковых удобрениях определяется в соответствии с "Инструкцией по составлению проектно-сметной документации на известкование кислых почв" (Минск, 1988). На загрязненные цезием-137 5,0 и более Ки/кв.км и стронцием-90 0,3 и более Ки/кв.км минеральные земли предусматривается дополнительное внесение извести с целью ускоренного доведения реакции почв до оптимальных значений, а на торфяные почвы при плотности загрязнения цезием-137 более 1,0 Ки/кв.км и стронцием-90 более 0,15 Ки/кв.км. Предусматривается дополнительное выделение извести на дерново-подзолистые супесчаные почвы с рН 5,6 - 6,0 и плотностью загрязнения цезием-137 1 - 5 Ки/кв.км для поддержания кислотности в оптимальном диапазоне рН (приложение 10). Все почвы I - II групп кислотности подлежат первоочередному известкованию в связи с высоким переходом радионуклидов в растения.
В случае, когда разовая доза превышает 8 т/га, известь вносится в два приема: 0,5 дозы под вспашку и 0,5 дозы под культивацию. Доза менее 8 т/га вносится единовременно под глубокую культивацию. На сенокосах и пастбищах известь вносится под предпосевную культивацию, при их перезалужении или коренном улучшении.
4.4.4. Применение удобрений
Система удобрений должна быть направлена на обеспечение стабильного урожая сельскохозяйственных культур и на снижение накопления радионуклидов в продукции. В первую очередь необходимо задействовать все источники обогащения почв органическим веществом - навоз, солому, зеленые удобрения, а при небольшом радиусе перевозок (до 30 - 40 км) и торф. Внесение органических удобрений должно обеспечить бездефицитный баланс гумуса в почве, а на бедных песчаных и супесчаных почвах - положительный баланс, снизить напряженность дефицита фосфора и калия в почве. Применение органических удобрений уменьшает переход радионуклидов из почвы в растения на 15 - 30%, одновременно повышает урожай сельскохозяйственных культур. В связи с незначительным использованием торфа в качестве удобрения уменьшилась опасность вторичного загрязнения почв радионуклидами. Содержание их в навозе за последние годы существенно снизилось. Поэтому рекомендуются те же дозы навоза и компостов под сельскохозяйственные культуры, что и на незагрязненных радионуклидами почвах.
Применение кремнеземистых и карбонатных сапропелей в дозах 60 - 80 т/га (под пропашные культуры) приводит к уменьшению накопления цезия-137 в урожае до 30 - 40% и в меньшей мере - стронция-90. Однако затраты на добычу и транспортировку сапропелей не окупаются прибавкой урожая даже при минимальном радиусе перевозок (до 1 - 5 км). По прибавке урожая 1 тонна сапропеля примерно равноценна 0,6 тонн навоза. Внесение карбонатного сапропеля исключает необходимость известкования кислых почв. Однако экономически более эффективно известкование почв доломитовой мукой.
Важным приемом, ограничивающим поступление радиоцезия из почвы в растения, является применение калийных удобрений, что обусловлено как антагонизмом катионов цезия и калия в почвенном растворе, так и значительной прибавкой урожая сельскохозяйственных культур, особенно на бедных калием дерново-подзолистых песчаных и супесчаных почвах. По мере повышения плотности загрязнения почв радионуклидами потребность в дополнительных дозах калия увеличивается.
Установлено значительное влияние калийных удобрений и на уменьшение накопления стронция-90 в растениях. Особенно эффективны повышенные дозы калийных удобрений под многолетние травы, корнеплоды и картофель. Так, в опытах на супесчаных почвах совхоза "Ветковский" с плотностью загрязнения стронцием-90 0,3 - 0,5 Ки/кв.км повышение дозы калия со 120 до 180 кг/га сопровождалось снижением накопления стронция-90 в клубнях различных сортов картофеля на 33 - 57% при одновременном повышении урожая на 20 - 50 ц/га.
Учитывая сравнительно невысокую стоимость калийных удобрений, рекомендованы максимальные дозы, которые еще обеспечивают прибавку урожая, дифференцированные в зависимости от типа почв и содержания в них обменного калия. Нормативы потребности в калийных удобрениях определены из расчета обеспечения полной потребности сельскохозяйственных культур для формирования планируемого урожая и повышения содержания калия в почве до оптимального уровня (приложение 11). Предусмотрен приоритет почв с высокой плотностью загрязнения радионуклидами, где повышение обеспеченности почв калием должно идти более быстрыми темпами. Для предотвращения избыточных доз калийных удобрений и ухудшения качества продукции введены ограничения. На почвах с избыточным содержанием обменного калия (более 300 мг/кг К2О на минеральных и 1200 мг/кг на торфяно-болотных почвах) внесение калийных удобрений не предусматривается до очередного агрохимического обследования почв.
Действие фосфорных удобрений также положительно сказывается на уменьшении поступления радионуклидов из почвы в растительную продукцию, особенно на почвах с низким содержанием подвижных фосфатов. Известно также, что фосфорные удобрения способствуют закреплению микроколичеств стронция-90 за счет осаждения его вносимыми фосфатами. Учитывая острый дефицит фосфорных удобрений и их высокую стоимость, рекомендовано для ведения земледелия на загрязненной территории обеспечить минимум фосфорных удобрений, необходимый для сбалансированного питания сельскохозяйственных культур с учетом содержания подвижных фосфатов в почве. Предусмотрено постепенное повышение содержания фосфора до оптимального уровня с приоритетом по плотности загрязнения земель радионуклидами (приложение 12). На почвах с высоким содержанием подвижных фосфатов (более 250 мг Р2О5 на 1 кг почвы на минеральных и 1000 мг/кг на торфяно-болотных почвах) фосфорные удобрения не вносятся до очередного цикла агрохимического обследования.
Важная роль отводится регулированию азотного питания растений. При недостатке доступного азота в почве снижается урожай и концентрация радионуклидов в продукции несколько повышается. С другой стороны, повышенные дозы азотных удобрений усиливают накопление радионуклидов в растениях. Расчет доз азотных удобрений необходимо вести, исходя из потребности растений на планируемый урожай. Чтобы избежать превышения оптимальных доз азотных удобрений но загрязненных землях, рекомендуется проведение почвенной и


База данных актуализирована по состоянию на 14.02.2020

Исправлена ошибка, из-за которой не отображались изображения.

Политика конфиденциальности